化学状態分析(酸化状態や化学結合の評価)

高分解能特性X線分光(HRCXS)

KMTLは材料の民間試験場として世界に先駆けて高分解能特性X線分光(HRCXS)を導入しました。 あらゆる材料において、構成元素の化学状態は、材料が持つ特性と密接な関係があります。 HRCXSでは固体、粉体、液体を問わず、これらの実用的な知見を得ることが可能です。 一歩進んだ評価手法としてのHRCXSを、是非ともご利用下さい。

>>> 適用例

ガラス -------微量不純物 [S] の 酸化状態解析 **セメント**[AI] の
配位状態解析

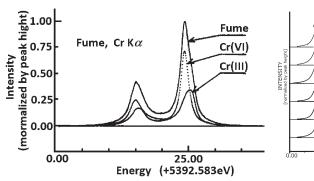
鉄系化合物 ------[Fe] の 酸化状態解析

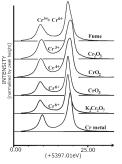
リン酸化合物
配位状態の違いによる形態判別

溶接ヒューム[Cr] の
酸化状態解析

 たばこ葉 [S] の酸化状態解析 (ウィルス感染判別)

>>> 他の化学状態分析法との違い

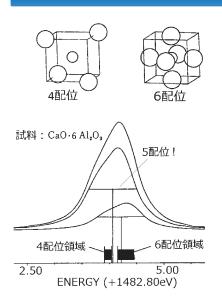

高分解能特性X線分光(HRCXS)は一般に普及している表面分析技術であるX線光電子分光法(XPS)やオージェ電子分光分析法(AES)と比較して表1のような特徴があります。HRCXSは、XPSやAESでは対応困難な**絶縁物や水溶液・含水物**も測定対象とすることができます。また、配位数分析を詳細に行うことが可能です。同様の(より高性能な)分析法としてX線吸収微細構造(XAFS)がありますが、放射光施設を利用するXAFSに比べ、簡便かつ機動的に状態分析を行える点も強みです。

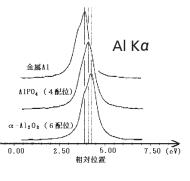

表1 化学状態分析法の比較

	HRCXS	XAFS **1	XPS	AES	
分析深度	バルク (数μm〜数10μm)	最表面〜バルク ^{※2} (数nm〜数μm)	最表面 (~10nm)	極表面 (サブnm)	
空間分解能	Δ	Δ	○ (100 μm)	© (10nm∼)	
化学状態変化への 鋭敏度	0	0	0	△ (一部の元素は○)	
得意とする元素 **3	第三・第四周期元素 (主にMg~Fe)	第二〜第四周期元素 (主にLi〜Zn)	第二〜第四周期元素 (主にC〜Zn)	主に第三周期元素	
絶縁物	©	○ (Li~Oは条件による)	(帯電中和が可能な物のみ)	困難な物が多い	
水溶液·含水物	0	0	×	×	
配位数分析	0	0	Δ	×	
真空度	大気圧~低真空	大気圧~超高真空	超高真空	超高真空	

- **1: 当社が出資している合同会社シンクロトロンアナリシスLLCが運用するビームラインでの分析装置性能です。
- ※2:計測方法により分析深度が異なります。
- ※3:条件さえ選べば、基本的に水素とヘリウムを除く全ての元素が分析可能です。

Cr含有量4wt%の溶接火花中の6価クロムの分析

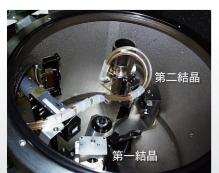



 Cr^{3+} : $Cr^{6+} = 44\pm 2:56\pm 2(at\%)$

湿式化学分析值 Cr3+: Cr6+ = 40±8:60±12(at%)

- ■一般的な元素分析装置(SEM-EDX、蛍光X線、EPMA)で検出されるCr元素のピーク(Kα線)は1本だが、HRCXSのエネルギー分解能は二桁以上高く、2本のピークとして検出することが出来る。
- Crの酸化数によってピークの位置と形状が変化 し、それらを利用することで存在比を求める ことができる。
- HRCXSを用いれば、固体試料のままで含有する Crの酸化数の確認、存在比を評価することが 可能であり、その精度は湿式分析と良い対応 が取れる。

セメント鉱物中のAI酸化物の配位数の解析



ype	Specimen	Shift (eV)	PWHM(eV)		4	配位		- 1
	metallic Al	0.00	0.83		1		•	
_	3CaO+Al ₂ O ₃	0.15	0.90		 4		1	- 1
4配位	12CaO+7AI ₂ O ₃	0.16	0.90		+		į.	- 1
	CaO+Al ₂ O ₃	0.17	0.90		 			- 1
	CaO+2AI-O	0.21	0.90		 -	-	:	- 1
	Anorthite	0.22	0.90		 +-	-	1	ı
	AIPO,	0.28	0.90		 +-		÷	1
3	or+Al ₂ O ₃	0.39	0.88		-		┼	— ∔
四四9	Spinel	0.39	0.88	_	+-		i -	i
9	Kaolinite	0.46	0.88		 		-	-

- AIの化合物であるAIPO4とα-AI₂O₃(アルミナ) において、AIの酸化数は共に3価であり、検出されるピークの位置は変化同じと思われるが、配位数の違いによっても検出されるピークの位置は変化する。
 - HRCXSを用いれば比較的容易にその状況を確認することができる。
- ※配位数とは、化合物の分子及び結晶中の中心原子から 見た最隣接原子(直接結合している酸素の数)の数を 意味する。

使用装置 (高分解能特性X線分光分析装置)

㈱リガク System 3580E3